CYPHER.DOG-
Enterprise
Proxy configuration with Vault

THE.INDEX

Vault
First run
KV2 secret engine
Policies
Proxy policy
Admin minimum policy
User key restore policy
Access for key restoring
Token accessors
Entities and aliases
Proxy
Required calls from proxy to Vault
listEntities
getTokenMountAccessor
createEntity
createEntityAlias
getAuthTokenRoleConfig
assignEntityAliasToTokenRole
writeSecret
getSecret
healthCheck
Non required calls from proxy to Vault
listkeys
createRestoreToken
Proxy endpoints
POST N~ault
POST Nault/get-secret
POST Nault/validate-secrets
GET /healthcheck
Optional POST /vault/get-restore-token
Self signed certificate

©O© 0 00 0 N NN W w

NNRNNNNNNNMNNRERERRERRERERRPREPR
© 0O N U B NNOOOOWONOU MwWPER OO O

1. Vault

HashiCorp Vault is a secrets management solution that brokers access for both humans
and machines, through programmatic access, to systems. Secrets can be stored, dynamically
generated, and in the case of encryption, keys can be consumed as a service without the need

to expose the underlying key materials.

This manual does not include instructions on how to start the HashiCorp Vault server as it
can be done in many ways. More information can be found here: https://www.hashicorp.com/

1.1. First run

After the initial start of the server, you need to open Vault’s Web Ul through the browser.

You should see something like in the picture below.

need in case of an emergency

Key shares
4
The number of key shares to split the master key into

Key threshold

.
£

The number of key shares required to reconstruct the master key

v Encrypt output with PGP

~ Encrypt root token with PGP

Let's set up the initial set of master keys that you'll

Here you need to define how many keys the master key should be splitted and how many
key shares are enough to reconstruct the master key. In short, this key allows you to change
the state of the Vault. From sealed to the unsealed. When the Vault server is started, it starts
in a sealed state. The server knows where and how to access the physical storage, but does
not know how to decrypt any of it. And here comes the master key which allows to unseal the

Vault.
More information about the master key can be found here:
https://learn.hashicorp.com/tutorials/vault/rekeying-and-rotating.

https://www.hashicorp.com/
https://learn.hashicorp.com/tutorials/vault/rekeying-and-rotating

The next step is to securely save keys and master keys.

Vault has been initialized! Here are your 4 keys.

Please securely distribute the keys below. When the Vault is re-sealed, restarted, or stopped, you must provide at least 2
of these keys to unseal it again. Vault does not store the master key. Without at least 2 keys, your Vault will remain
permanently sealed.

Initial root token

Key1

Key 2

Key 3

Key 4

Continue to U & Download keys

Now, after processing to unseal, we need to provide splitted keys to unseal the vault.

Unseal Vault

Vault is sealed

You can unseal the vault by entering a partion of the master key. Once all partions are entered, the vault will be uns=aled.

Master Key Portion

‘ |
|
Unseal

Unseal Vault

Vault is sealed

“You can unseal the vault by entering a portion of the master key. Once all portions are entered, the vault will be unsealed.

Master Key Portion

12 keys provided _?'

Only two keys are necessary to unseal the Vault, as it was configured before. Now we can
access the Vault’s Web Ul by using root token.

Sign in to Vault

Metheod

Token

<

1.2. KV2 secret engine

This secret engine is used to store arbitrary secrets within the configured physical storage
for Vault and it allows key versioning.

More information about Key/Value secret engine can be found here:
https://www.vaultproject.io/docs/secrets/kv.

To enable a new KV2 secret engine simply click on Enable new engine.

Secrets Engines

Enable new engine +

cubbyhole/
cubbyhole_g58bbasa

Then select KV and click Next.

Enable a Secrets Engine
Gemeric
KV Cortio tes SSH Transit TOTP
®
Cloud
£ o aws Fiy))
Actiy : Googl Googl
Directary Alicloud RS Azure Clood Cloud ks
Infra
Consul Databases Momad RabbitMa
Mext

https://www.vaultproject.io/docs/secrets/kv

Expand Method Options and make sure that version 2 is selected. Then press on Enable
Engine.

Enable KV Secrets Engine

Path
kv

 Hide Method Options

Version (@)

<

2

Description

List methed when unauthenticated
Local @
sealwrap @

Default Lease TTL
Wault will use the default lease duration

Max Lease TTL
Wault will use the default lease duration

Request keys excluded from HMACing in audit @

Response keys excluded from HMACing in audit ©

*

Allowed passthrough request headers @

1.3. Policies

These example policies restrict access to Vault's resources to a minimum. They are
necessary to perform actions

Proxy policy

This policy will allow proxy to:
e Save user keysto Vault's KV2 store engine
e Get available mount accessors

Get auth tokens role config

Create new entities and entities aliases

Assign entity alias to token role

Look up if entity exists

List and read keys

path “identity/*" {

capabilities = ["create", "update", "list"]
}
path "kv/data/*" {

capabilities = ["create", "update", "read"]
}

path "kv/metadata/cypher/*" {
capabilities = ["list", "read"]
}

path "/sys/auth" {
capabilities = ["read"]
}

path "auth/token/*" {
capabilities = ["create", "update", "read"]

}

Admin minimum policy

Token with this policy assigned to it, will have the opportunity to generate a new token for
a user who wants to recover his private key. Value secret_key accessor is taken from.

path "auth/token/create/secret_key accessor" {
capabilities = ["create", "update"]

}

User key restore policy

This policy allows access to the specific path in the Vault store.

For example, if you assigned the email user @email.com when creating the token,
this token will only have access to kv/data/cypher/user@email.com/*.

The cypher value is not necessary. It depends on your proxy configuration and it is just
a subfolder for storing user’s keys.

path "kv/data/cypher/{{identity.entity.name}}/*" {
capabilities = ["read"]

}

1.4. Access for key restoring

Steps written below describe proper configuration that will let users to fetch only keys that
are stored by them.

Token accessors

When tokens are created, a token accessor is also created and returned. This accessor is
a value that acts as a reference to a token and can only be used to perform limited actions.
That reference will contain tokens limitation.

To create a token accessor, you need to make an HTTP POST call to your Vault server.
In headers set:

e content-type: application/json

e x-vault-token: your_root_token (it looks like: s.7UIXHBISYYYHsGNsiXeKRrH6)

The path for this request looks like
http:/lyour.vault.server.com/vl/auth/token/roles/<your_accessor_name>.
Put your own token accessor name. It will be used later in proxy configuration.

The body should look like in the picture below:

= Request ®

Method Request URL
POST ~ http://vault.enterprise.cypher.dog/v1/auth/token/roles/secret_key_accessor SEND
Parameters A
Headers Body Variables
Bady content type Editor view
application/json ~ Raw input -
FORMAT JSON MINIFY JSON
{
"allowed policies": ["default”, "gettoken"],
"renewable": false,
"token num uses": 1,
"token type": "service'
}
a Selected environment: Default - ®

Essential things:
e allowed_policies:
o default policy is required

o gettoken is the name of the policy that was set in User key restore policy

paragraph. You need to put here your own name

e renewable - false means that this token can not be renewable
e token_num_uses - 1 means that token created through this accessor will be a single

use token

e token_type - service tokentype. You canread more about it here:
https://www.vaultproject.io/docs/concepts/tokens#token-type-comparison

Entities and aliases

Vault clients can be mapped as entities and their corresponding accounts with
authentication providers can be mapped as aliases. In essence, each entity is made up of
zero or more aliases. Identity secrets engine internally maintains the clients who are
recognized by Vault. The alias will be assigned to the token when it is created. This will allow

you to restrict access while downloading the backup from the Vault server.

It needs no additional configuration on the Vault server. Everything will be served through

the proxy server.

https://www.vaultproject.io/docs/concepts/tokens#token-type-comparison

2. Proxy

Proxy is a middleware server which has access to communicate with Vault Server and
can communicate with CypherDog Enterprise Admin Application and CypherDog Desktop
Application.

Optional requirements and required (e.g. data types returned) functionalities of the proxy
server, which should be implemented for correct operation, are described below.

Descriptions of the required functionalities contain a minimum of logic needed for proper
operation and should be treated as guidelines.

Base vault path will look like: http://your.proxy.address.com/vl/

2.1. Required calls from proxy to Vault

This section introduces and describes the calls that the proxy server will make to the vault
server. The descriptions provide background information so that it can be used according to
the technology that will be used to run the proxy server.

a) listEntities

Path GET: identity/entity/name?list=true

Headers e content-type: application/json
e x-vault-token: proxyToken

Path variables none

Body none

Example {
response "request _id": "c8a2d5c4-8a37-39a6-aca9-
038f4ddee8ab",
"lease_id":
"renewable": R
"lease duration": 0,
"data": {
"keys": [
"userl@email.com",
"user2@email.com"

1,
}s
"wrap_info": ,
"warnings":
"auth":

J

b) getTokenMountAccessor

Path

GET: sys/auth

Headers

e content-type: application/json
e x-vault-token: proxyToken

Path variables none
Body none
Example {
response "token/": {
"accessor": "auth_token_a731143c",
"config": {
"default lease ttl": 0,
"force_no_cache": false,
"listing visibility": "hidden",
"max_lease ttl": 9,
"token_type": "default-service"
¥

"description”: "token based credentials",
"external_entropy access":
"local": R
"options": ,
"seal wrap":

"type": "token",
"uuid": "c8f6be20-6f3c-0584-7ae8-6181e76falo4"

¥

J

)

"approle/": {
"accessor": "auth_approle_a8b081f7",
"config": {

"default lease ttl": o,
"force_no_cache":
"max_lease ttl": 9,
"token_ type": "default-service"
¥
"description”: "",
"external_entropy access":
"local": R
"options": ;
"seal wrap":
"type": "approle",
"uuid": "64e9f94c-bb97-0825-0339-8b35022d63aa"

J

)

¥
"request_id": "bb8f897c-79bf-7ac4-ecb6-
bdc689cd352e",

"lease_id": "",
"renewable": R
"lease_duration": 0,
"data": {
"approle/": {
"accessor": "auth_approle a8b081f7",
"config": {

"default lease ttl": o,

"force_no_cache": s
"max_lease ttl": 0,

"token_type": "default-service"
b
"description": "",
"external_entropy_access": ;
"local": R
"options": ,
"seal wrap": ,

"type": "approle",
"64e91f94 c-bb97-0825-0339-

"uuid":
8b35022d63aa"
3,
"token/": {
"accessor": "auth token a731143c",
"config": {
"default lease ttl": o,
"force_no_cache": ,
"listing visibility": "hidden",
"max_lease_ttl": 0,
"token_type": "default-service"
¥
"description”: "token based credentials",
"external_entropy access": ,
"local": R
"options": s
"seal wrap": s
"type": "token",
"uuid": "c8f6be20-6f3c-0584-7ae8-
6181e76fal04"
}
¥
"wrap_info": ,
"warnings": h
"auth":

C) createEntity

Path

PUT: identity/entity

Headers

content-type: application/json
X-vault-token: proxyToken

Path variables none
Body {
name: String,
metadata: {
email: String
}
}
Example body | {
"name": "user@example.com",
"metadata": {
"email": "user@example.com"
}
}
Example {
response "request_id": "ca34913a-47c7-888f-06fc-

0d0a574e2dal”,
"lease id": "",
"renewable" : R
"lease_duration": @,
"data": {
"aliases": 5
"id": "ee8e3f66-fbcc-8329-c59c-7cOee7ed8d82",
"name": "user@example.com"
3
"wrap_info": 5
"warnings": ,
"auth":

d) createEntityAlias

Path

PUT: identity/entity-alias

Headers

content-type: application/json
X-vault-token: proxy Token

Path variables

none

Body

{
name: String,
cannonical_id: String,
mount_accessor: String

Example body

"name": "user@example.com",

“cannonical id": "ee8e3f66-fbcc-8329-c59c-
7cOee7ed8d82",

"mount_accessor": "auth token a731143c"

}

Example response

{
"request_id": "cfdlcffd-4b6d-2b7b-6026-7af71b7c5755",
"lease id": "",

"renewable": false,
"lease_duration": @,
"data": {
"canonical_id": "c6910a08-clba-bea2-36bd-
7a5736d89b03",
"id": "387d6bl5-59de-clOf-1bBe-1fb82cb3c3d1l”
3
"wrap_info": null,
"warnings": null,
"auth": null

Caution

e cannonical_id value is taken from createEntity endpoint
o response.data.id
e mount_accessor value is taken from
getTokenMountAccessor endpoint
o response[‘token/’].accessor

e) getAuthTokenRoleConfig

Path

GET: auth/token/roles/{secret_key accessor}

Headers

content-type: application/json
X-vault-token: proxy Token

Path variables

e secret_key accessor is a value created in Token accessors
paragraph

Body

none

Example response

"request_id": "fd82ad8e-96de-f726-e279-6c29b9c1b4a2",
"lease_id": "",
"renewable": false,
"lease_duration": 0,
"data": {
"allowed entity aliases": [
"user@cypher.dog"
1,
"allowed policies": [
"default",
"gettoken"
1,
"disallowed policies": [],
"explicit max_ttl": o,

"name": "secret_key accessor",
"orphan": false,
"path_suffix": "",

"period": 0,
"renewable": false,
"token_explicit_max_ttl": o,
"token_num uses": 1,
"token_period": 0,
"token_type": "service"

¥

"wrap_info": null,

"warnings": null,

"auth": null

Caution

o field allowed_entity aliases can be NULL

f) assignEntityAliasToTokenRole

Path

POST: auth/token/roles/

Headers

content-type: application/json
X-vault-token: proxy Token

Path variables none
Body {
allowed_entity aliases: String[]
}
Example body {
"allowed entity aliases": [
"user@cypher.dog",
"Jjames@example.com"
]
}

Example response

No response

Caution

e Value provided in allowed_entity _aliases will override the
existing one. Please make sure to create a new array where
you copy values from getAuthTokenRoleConfig
(response.data.allowed_entity aliases) and add the new value

s)) writeSecret

Path

POST: kv/data/{group}/{user_email}/{device}

Headers

content-type: application/json
X-vault-token: proxy Token

Path variables

e group is a kind of folder name, where you want to store users
secrets

e user_email email of the user who wants to add their private
key to the vault

e device - fornow it will be only "FX". New values may be
added in future releases of CypherDog Enterprise.

Body {
data: {
uuid: String
}
}
Example body {
"data": {

"29940cdb-5973-4bc7-a7bc-cfdd121aelc6":
"MIIG/QIBADANBgkghkiGOWOBAQEF(...)S7C+DfCgGId75E="

}
}

Example response

No response

h) getSecret

Path GET: kv/data/{group}/{email}/{device}
or
GET: kv/data/{group}/{email}/{device}?version={version}
Headers content-type: application/json

x-vault-token: requestorToken

Path variables

e group - same as being used in writeSecret

e email - user email who wants to restore its private key

e device - fornow it will be only "FX". New values may be
added in future releases of CypherDog Enterprise.

e version - (e.g.: 3) optional parameter. Here you can specify
which version of a token should be returned from Vault. If
version is not specified vault will return latest version

Body

none

Example response

"request_id": "c84543c3-0393-c@4e-5eb6-413194be578d",
"lease id": "",
"renewable": false,
"lease duration": 0,
"data": {
"data": {
"f6e63b95-cf82-4b72-9941-1fc98c7063909" :
"MIIG/QIBADANB{. . }+DfCgGId75E="

}s

"metadata": {
"created_time": "2021-06-10T13:38:33.9852521177",
"deletion_time": "",
"destroyed": false,
"version": 3

}

¥

"wrap_info": null,
"warnings": null,
"auth": null

}

Caution

Please make sure not to use proxyToken here. The requestor token
will be provided by the user of the application.

) healthCheck

Path GET: sys/health
Headers content-type: application/json
X-vault-token: proxy Token
Path variables none
Body none

Example response | {
"initialized": true,
"sealed": false,

"standby": false,
"performance_standby": false,

"replication_performance mode": "disabled",
"replication_dr_mode": "disabled",
"server_time_utc": 1623766673,

"version": "1.6.2",

"cluster_name": "vault-cluster-3f729579",
"cluster_id": "9055f590-fbdb-5e56-4da3-08be5d0817a5"

}

Caution Please make sure not to use proxyToken here. The requestor token
will be provided by the user of the application.

2.2. Non required calls from proxy to Vault

a) listkeys

Path

LIST: kv/metadata/{group}

Headers

content-type: application/json
x-vault-token: proxyToken

Path variables

e group - same as being used in writeSecret

Body

none

Example response

"request_id": "76946836-ae61-c103-9cce-cc720e8fdb56",
"lease id": "",
"renewable": false,
"lease duration": 0,
"data": {
"keys": [
"Jjames@example.com/”’,
1
}s
"wrap_info": null,
"warnings": null,
"auth": null

b) createRestoreToken

Path

POST: auth/token/create/{secret_key accessor}

Headers

content-type: application/json
x-vault-token: adminToken

Path variables

e secret_key accessor is a value created in Token accessors
paragraph

Body

entity alias: String
num_uses: Integer

Example body

"entity alias": "james@example.com",
"num_uses": 1

Example response

"request _id": "9b359aa5-2675-e591-cf03-ced4lle31d6eb",

"lease_id": ,
"renewable": false,
"lease_duration": 0,
"data": null,
"wrap_info": null,
"warnings": null,
"auth": {
"client_token": "s.5D48miD0iZUhjfeqgpsksI1J4",
"accessor": "1LJuX1pfhApECQ8QOKRCLgXF",
"policies": [
"default”,
"gettoken"
1,
"token_policies": [
"default”,
"gettoken"
1,
"metadata": null,
"lease_duration": 604800,
"renewable": false,
"entity id": "dd3cf5dl-eeec-8b19-394c-15c13aeallec”,
"token_type": "service",
"orphan": false
}
}

Caution

This endpoint can be used to create the single-use token which can
be delivered to users to let them restore their private key. This token
will have access only to the user with email provided in entity_alias.
This action can be performed through Vault CLI, but if you decide to
implement that call, make sure to secure it properly and allow access
to create only for admins and their tokens with Admin minimum policy

2.3. Proxy endpoints

a) POST /vault

Example input:

{
"email”: "james@example.com",
"uuid": "7bl8f9e4d-abab-44fc-a430-2c91da22db71",
"secret":
"MIICXAIBAAKBgQCqGKuk01De7zhZj6+HOqt jTkVx{. ..}/scw9RZz+/6rCI4po=",
"device": "FX"
¥
Example output:
{
"request_id": "686b4231-9414-432c-0761-790d25cc77d7",
"data": {
"created_time": "2021-06-16T11:08:13.581438136Z",
"deletion_time": "",
"destroyed": ,
"version": 1
}

List existing entities,
call listEntities

g Returned error?

Propagate error

*

Mo

ces errorresponse.statusCode
equals 404

Mo

&8
ermor.response.body.errors.length
equals 07

create new Entity and

Does response.data.keys
include email from request?

Store user private key |4

fee——dy Alias

call

getTokenMountAccessor e Ty

response.data[“teken™). accessor———7———Tesponse.data.i

call createEntityAlias

call
getAuthTokenRole Config

data.allowed_entity_aliases

call

call writeSecret

assignEntityAliasToTokenRole

b) POST /vault/get-secret

Example input:

{
"email": "user@email.com",
"device": "FX",
"version": 4
}
or
{
"email": "user@email.com",
"device": "FX"
}
and example header:
"Xx-vault-token": "s.koiTzfowsq2Y62 CTWRXdx1KX"
f - ‘~ return value from first key-valus
| START | call getSecret pair from
e S response.data.data
Example output:
{

"token": "s.ZMBwadxGAy702Lyz5Wr4710A"
}

C) POST /vault/validate-secrets

Example input:

{
"user@example.com": [
{
"public_key": "MIIBCgKCAQEA+XxGZ/wcz{...}FRU9ZAN6YWIDAQAB",
"device_type": "FX"
}
1B
"jon@example.com": [
{
"public_key": "MIIBCgKCAQEA+XGZ/wcz{...}FRU9ZAN6YWIDAQAB",
"device_type": "FX"
}
1,
"admin@example.com": []
}
Example output:
{

"user@domain.com": {
"FX": "OK"

})

"jon@domain.com": {
"FX": "NO_RECORDS"

¥

"annie@domain.com": {
"FX": "NO_INTEGRITY"

})

"admin@domain.com": {
"FX": "NO_DEVICE"

Take one key value

body map. Keys are

pair from request

users emails

Is values array length
equals to 07

Y

Take one key value pair
from values array. Now
keys are device type and
wvalues are public keys

Yes

An error

call getSecret occured?

=

add to response

userEmail: {"FX": "NO_DEVICE"}

Mo

v

Check the

compatibility of the
public key with the
private one

Are the keys

Yes compatible?

add to response
userEmail: {deviceType: "OK"}

any unhandled ke

v

Propagate emor and

stop validation

A

Mo

Is

rror.response.statusCod
equals to 4047

Yes

add to response

userEmail: {deviceType: "NO_RECORDS}

add to respon
{deviceType: "M

se userEmail:
O_INTEGRITY}

re any unhandl

-
TN devices left?

F Y

value pairs from map left
unhandled?

Mo

'

Retum
response

d) GET /healthcheck

call Vault
healthCheck

return proper
response

Example response:

{
"uptime™: 674600.447861698,

"timestamp™: 1623837163685,

"vault"; {
"initialized": true,
"sealed": false,
"standby": false,
"performance_standby": false,
"replication_performance_mode"; "disabled",
“replication_dr_mode": "disabled",
"server_time_utc": 1623837163,
"version"; "1.6.2",
"cluster_name": "vault-cluster-3f729579",
“cluster_id": "9055f590-fbdb-5e56-4da3-08be5d0817a5"

}
}

e) Optional POST /vault/get-restore-token

Example input:

{

"user_email": "user@email.com",
"admin_token": "s.koiTzfowsq2Y62CTwRXdx1KX"

IZ: START :ﬁ= i

call listkeys

P Does .,
response.data.keys amray %Yﬁ
Hinclude provided email?

Mo ~ 4

™, -
™, ~

S

call
createRestoreToken

* retumn response

Example output:

{
"token": "s.ZMBwadxGAy702Lyz5Wr4710A"

}

2.4. Self signed certificate

The self-signed certificate is an important point of the entire system. It allows you to
verify that the user's keys will go to the correct proxy server. The exact implementation of
certificate pinning depends on the technology used to run the proxy server. Below is the
instruction on how to generate a certificate and its fingerprint using OpenSSL.

=> ~ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -
days 365

This command will generate two files that should be used to start the HTTPS server. After
calling the above command, you will need to enter the PEM passphrase. Remember it and
keep it safe and secure. You will also need to provide some additional information to
generate the correct certificate.

The next step is to generate certificate fingerprint.

= ~ openssl x509 -noout -in cert.pem -fingerprint -sha256

SHA256
Fingerprint=29:E6:34:79:9E:DE:F0:13:14:86:33:82:23:03:A0:92:D8:0C:E7:A3:
9B:66:96:FA:F9:03:6D:17:7C:DE:F9:07

The certificate hash is not sensitive data. It will be used to confirm in the administrator's
application that the server with which the connection is being made is correct. After entering
the server address, the administrator's application will display a message asking for
confirmation of fingerprints compliance. After that, check if the fingerprint displayed in the
message matches the one that was generated

