

CYPHER.DOG™

Enterprise

Proxy configuration with Vault

THE.INDEX
Vault 3

First run 3

KV2 secret engine 5

Policies 7

Proxy policy 7

Admin minimum policy 7

User key restore policy 8

Access for key restoring 8

Token accessors 8

Entities and aliases 9

Proxy 10

Required calls from proxy to Vault 10

 listEntities 10

 getTokenMountAccessor 11

 createEntity 13

 createEntityAlias 14

 getAuthTokenRoleConfig 15

 assignEntityAliasToTokenRole 16

 writeSecret 17

 getSecret 18

 healthCheck 19

Non required calls from proxy to Vault 20

 listKeys 20

 createRestoreToken 20

Proxy endpoints 22

 POST /vault 22

 POST /vault/get-secret 24

 POST /vault/validate-secrets 25

 GET /healthcheck 27

 Optional POST /vault/get-restore-token 28

Self signed certificate 29

1. Vault

HashiCorp Vault is a secrets management solution that brokers access for both humans

and machines, through programmatic access, to systems. Secrets can be stored, dynamically

generated, and in the case of encryption, keys can be consumed as a service without the need

to expose the underlying key materials.

This manual does not include instructions on how to start the HashiCorp Vault server as it

can be done in many ways. More information can be found here: https://www.hashicorp.com/

1.1. First run

After the initial start of the server, you need to open Vault’s Web UI through the browser.

You should see something like in the picture below.

Here you need to define how many keys the master key should be splitted and how many

key shares are enough to reconstruct the master key. In short, this key allows you to change

the state of the Vault. From sealed to the unsealed. When the Vault server is started, it starts

in a sealed state. The server knows where and how to access the physical storage, but does

not know how to decrypt any of it. And here comes the master key which allows to unseal the

Vault.

More information about the master key can be found here:

https://learn.hashicorp.com/tutorials/vault/rekeying-and-rotating.

https://www.hashicorp.com/
https://learn.hashicorp.com/tutorials/vault/rekeying-and-rotating

The next step is to securely save keys and master keys.

Now, after processing to unseal, we need to provide splitted keys to unseal the vault.

Only two keys are necessary to unseal the Vault, as it was configured before. Now we can

access the Vault’s Web UI by using root token.

1.2. KV2 secret engine

This secret engine is used to store arbitrary secrets within the configured physical storage

for Vault and it allows key versioning.

More information about Key/Value secret engine can be found here:

https://www.vaultproject.io/docs/secrets/kv.

To enable a new KV2 secret engine simply click on Enable new engine.

Then select KV and click Next.

https://www.vaultproject.io/docs/secrets/kv

Expand Method Options and make sure that version 2 is selected. Then press on Enable

Engine.

1.3. Policies

These example policies restrict access to Vault’s resources to a minimum. They are

necessary to perform actions

Proxy policy

This policy will allow proxy to:

● Save user keys to Vault’s KV2 store engine

● Get available mount accessors

● Get auth tokens role config

● Create new entities and entities aliases

● Assign entity alias to token role

● Look up if entity exists

● List and read keys

path "identity/*" {
 capabilities = ["create", "update", "list"]
}

path "kv/data/*" {
 capabilities = ["create", "update", "read"]
}

path "kv/metadata/cypher/*" {
 capabilities = ["list", "read"]
}

path "/sys/auth" {
 capabilities = ["read"]
}

path "auth/token/*" {
 capabilities = ["create", "update", "read"]
}

Admin minimum policy

Token with this policy assigned to it, will have the opportunity to generate a new token for

a user who wants to recover his private key. Value secret_key_accessor is taken from.

path "auth/token/create/secret_key_accessor" {

 capabilities = ["create", "update"]

}

User key restore policy

This policy allows access to the specific path in the Vault store.

For example, if you assigned the email user@email.com when creating the token,

this token will only have access to kv/data/cypher/user@email.com/*.

The cypher value is not necessary. It depends on your proxy configuration and it is just

a subfolder for storing user’s keys.

path "kv/data/cypher/{{identity.entity.name}}/*" {

 capabilities = ["read"]

}

1.4. Access for key restoring

Steps written below describe proper configuration that will let users to fetch only keys that

are stored by them.

Token accessors

When tokens are created, a token accessor is also created and returned. This accessor is

a value that acts as a reference to a token and can only be used to perform limited actions.

That reference will contain tokens limitation.

To create a token accessor, you need to make an HTTP POST call to your Vault server.

In headers set:

● content-type: application/json

● x-vault-token: your_root_token (it looks like: s.7UIXHBlsYYYHsGNsiXeKRrH6)

The path for this request looks like

http://your.vault.server.com/v1/auth/token/roles/<your_accessor_name>.

Put your own token accessor name. It will be used later in proxy configuration.

The body should look like in the picture below:

Essential things:

● allowed_policies:

○ default policy is required

○ gettoken is the name of the policy that was set in User key restore policy

paragraph. You need to put here your own name

● renewable - false means that this token can not be renewable

● token_num_uses - 1 means that token created through this accessor will be a single

use token

● token_type - service token type. You can read more about it here:

https://www.vaultproject.io/docs/concepts/tokens#token-type-comparison

Entities and aliases

Vault clients can be mapped as entities and their corresponding accounts with

authentication providers can be mapped as aliases. In essence, each entity is made up of

zero or more aliases. Identity secrets engine internally maintains the clients who are

recognized by Vault. The alias will be assigned to the token when it is created. This will allow

you to restrict access while downloading the backup from the Vault server.

It needs no additional configuration on the Vault server. Everything will be served through

the proxy server.

https://www.vaultproject.io/docs/concepts/tokens#token-type-comparison

2. Proxy

Proxy is a middleware server which has access to communicate with Vault Server and

can communicate with CypherDog Enterprise Admin Application and CypherDog Desktop

Application.

Optional requirements and required (e.g. data types returned) functionalities of the proxy

server, which should be implemented for correct operation, are described below.

Descriptions of the required functionalities contain a minimum of logic needed for proper

operation and should be treated as guidelines.

Base vault path will look like: http://your.proxy.address.com/v1/

2.1. Required calls from proxy to Vault

This section introduces and describes the calls that the proxy server will make to the vault

server. The descriptions provide background information so that it can be used according to

the technology that will be used to run the proxy server.

a) listEntities

Path GET: identity/entity/name?list=true

Headers ● content-type: application/json
● x-vault-token: proxyToken

Path variables none

Body none

Example
response

{
 "request_id": "c8a2d5c4-8a37-39a6-aca9-
038f4ddee8a6",
 "lease_id": "",
 "renewable": false,
 "lease_duration": 0,
 "data": {
 "keys": [
 "user1@email.com",
 "user2@email.com"

],

 },

 "wrap_info": null,

 "warnings": null,

 "auth": null

}

b) getTokenMountAccessor

Path GET: sys/auth

Headers ● content-type: application/json
● x-vault-token: proxyToken

Path variables none

Body none

Example
response

{
 "token/": {
 "accessor": "auth_token_a731143c",
 "config": {
 "default_lease_ttl": 0,
 "force_no_cache": false,
 "listing_visibility": "hidden",
 "max_lease_ttl": 0,
 "token_type": "default-service"
 },
 "description": "token based credentials",
 "external_entropy_access": false,
 "local": false,
 "options": null,
 "seal_wrap": false,
 "type": "token",
 "uuid": "c8f6be20-6f3c-0584-7ae8-6181e76fa104"
 },
 "approle/": {
 "accessor": "auth_approle_a8b081f7",
 "config": {
 "default_lease_ttl": 0,
 "force_no_cache": false,
 "max_lease_ttl": 0,
 "token_type": "default-service"
 },
 "description": "",
 "external_entropy_access": false,
 "local": false,
 "options": null,
 "seal_wrap": false,
 "type": "approle",
 "uuid": "64e9f94c-bb97-0825-0339-8b35022d63aa"
 },
 "request_id": "bb8f897c-79bf-7ac4-ecb6-
bdc689cd352e",
 "lease_id": "",
 "renewable": false,
 "lease_duration": 0,
 "data": {
 "approle/": {
 "accessor": "auth_approle_a8b081f7",
 "config": {
 "default_lease_ttl": 0,

 "force_no_cache": false,
 "max_lease_ttl": 0,
 "token_type": "default-service"
 },
 "description": "",
 "external_entropy_access": false,
 "local": false,
 "options": null,
 "seal_wrap": false,
 "type": "approle",
 "uuid": "64e9f94c-bb97-0825-0339-
8b35022d63aa"
 },
 "token/": {
 "accessor": "auth_token_a731143c",
 "config": {
 "default_lease_ttl": 0,
 "force_no_cache": false,
 "listing_visibility": "hidden",
 "max_lease_ttl": 0,
 "token_type": "default-service"
 },
 "description": "token based credentials",
 "external_entropy_access": false,
 "local": false,
 "options": null,
 "seal_wrap": false,
 "type": "token",
 "uuid": "c8f6be20-6f3c-0584-7ae8-
6181e76fa104"
 }
 },
 "wrap_info": null,
 "warnings": null,
 "auth": null
}

c) createEntity

Path PUT: identity/entity

Headers content-type: application/json
x-vault-token: proxyToken

Path variables none

Body {
 name: String,
 metadata: {
 email: String
 }
}

Example body {

 "name": "user@example.com",

 "metadata": {

 "email": "user@example.com"

 }

}

Example
response

{

 "request_id": "ca34913a-47c7-888f-06fc-

0d0a574e2da1",

 "lease_id": "",

 "renewable": false,

 "lease_duration": 0,

 "data": {

 "aliases": null,

 "id": "ee8e3f66-fbcc-8329-c59c-7c0ee7ed8d82",

 "name": "user@example.com"

 },

 "wrap_info": null,

 "warnings": null,

 "auth": null

}

d) createEntityAlias

Path PUT: identity/entity-alias

Headers content-type: application/json
x-vault-token: proxyToken

Path variables none

Body {

 name: String,

 cannonical_id: String,

 mount_accessor: String

}

Example body {

 "name": "user@example.com",

 "cannonical_id": "ee8e3f66-fbcc-8329-c59c-

7c0ee7ed8d82",

 "mount_accessor": "auth_token_a731143c"

}

Example response {

 "request_id": "cfd1cffd-4b6d-2b7b-6026-7af71b7c5755",

 "lease_id": "",

 "renewable": false,

 "lease_duration": 0,

 "data": {

 "canonical_id": "c6910a08-c1ba-bea2-36bd-

7a5736d89b03",

 "id": "387d6b15-59de-c10f-1b0e-1fb82cb3c3d1"

 },

 "wrap_info": null,

 "warnings": null,

 "auth": null

}

Caution ● cannonical_id value is taken from createEntity endpoint
○ response.data.id

● mount_accessor value is taken from
getTokenMountAccessor endpoint

○ response[“token/”].accessor

e) getAuthTokenRoleConfig

Path GET: auth/token/roles/{secret_key_accessor}

Headers content-type: application/json
x-vault-token: proxyToken

Path variables ● secret_key_accessor is a value created in Token accessors
paragraph

Body none

Example response {

 "request_id": "fd82ad8e-96de-f726-e279-6c29b9c1b4a2",

 "lease_id": "",

 "renewable": false,

 "lease_duration": 0,

 "data": {

 "allowed_entity_aliases": [

 "user@cypher.dog"

],

 "allowed_policies": [

 "default",

 "gettoken"

],

 "disallowed_policies": [],

 "explicit_max_ttl": 0,

 "name": "secret_key_accessor",

 "orphan": false,

 "path_suffix": "",

 "period": 0,

 "renewable": false,

 "token_explicit_max_ttl": 0,

 "token_num_uses": 1,

 "token_period": 0,

 "token_type": "service"

 },

 "wrap_info": null,

 "warnings": null,

 "auth": null

}

Caution ● field allowed_entity_aliases can be NULL

f) assignEntityAliasToTokenRole

Path POST: auth/token/roles/

Headers content-type: application/json
x-vault-token: proxyToken

Path variables none

Body {

 allowed_entity_aliases: String[]

}

Example body {

 "allowed_entity_aliases": [

 "user@cypher.dog",

 "james@example.com"

]

}

Example response No response

Caution ● Value provided in allowed_entity_aliases will override the
existing one. Please make sure to create a new array where
you copy values from getAuthTokenRoleConfig
(response.data.allowed_entity_aliases) and add the new value

g) writeSecret

Path POST: kv/data/{group}/{user_email}/{device}

Headers content-type: application/json
x-vault-token: proxyToken

Path variables ● group is a kind of folder name, where you want to store users
secrets

● user_email email of the user who wants to add their private
key to the vault

● device - for now it will be only "FX". New values may be
added in future releases of CypherDog Enterprise.

Body {

 data: {

 uuid: String

 }

}

Example body {

 "data": {

 "29940cdb-5973-4bc7-a7bc-cfdd121ae1c6":

"MIIG/QIBADANBgkqhkiG9w0BAQEF(...)S7C+DfCgGJd75E="

 }

}

Example response No response

h) getSecret

Path GET: kv/data/{group}/{email}/{device}
or
GET: kv/data/{group}/{email}/{device}?version={version}

Headers content-type: application/json
x-vault-token: requestorToken

Path variables ● group - same as being used in writeSecret
● email - user email who wants to restore its private key
● device - for now it will be only "FX". New values may be

added in future releases of CypherDog Enterprise.
● version - (e.g.: 3) optional parameter. Here you can specify

which version of a token should be returned from Vault. If
version is not specified vault will return latest version

Body none

Example response {

 "request_id": "c84543c3-0393-c04e-5eb6-4f3f94be578d",

 "lease_id": "",

 "renewable": false,

 "lease_duration": 0,

 "data": {

 "data": {

 "f6e63b95-cf82-4b72-9941-fc98c7063909":

"MIIG/QIBADANB{..}+DfCgGJd75E="

 },

 "metadata": {

 "created_time": "2021-06-10T13:38:33.985252117Z",

 "deletion_time": "",

 "destroyed": false,

 "version": 3

 }

 },

 "wrap_info": null,

 "warnings": null,

 "auth": null

}

Caution Please make sure not to use proxyToken here. The requestor token
will be provided by the user of the application.

i) healthCheck

Path GET: sys/health

Headers content-type: application/json
x-vault-token: proxyToken

Path variables none

Body none

Example response {

 "initialized": true,

 "sealed": false,

 "standby": false,

 "performance_standby": false,

 "replication_performance_mode": "disabled",

 "replication_dr_mode": "disabled",

 "server_time_utc": 1623766673,

 "version": "1.6.2",

 "cluster_name": "vault-cluster-3f729579",

 "cluster_id": "9055f590-fbdb-5e56-4da3-08be5d0817a5"

}

Caution Please make sure not to use proxyToken here. The requestor token
will be provided by the user of the application.

2.2. Non required calls from proxy to Vault

a) listKeys

Path LIST: kv/metadata/{group}

Headers content-type: application/json
x-vault-token: proxyToken

Path variables ● group - same as being used in writeSecret

Body none

Example response {

 "request_id": "76946836-ae61-c103-9cce-cc720e8fdb56",

 "lease_id": "",

 "renewable": false,

 "lease_duration": 0,

 "data": {

 "keys": [

 "james@example.com/”,

],

 },

 "wrap_info": null,

 "warnings": null,

 "auth": null

}

b) createRestoreToken

Path POST: auth/token/create/{secret_key_accessor}

Headers content-type: application/json
x-vault-token: adminToken

Path variables ● secret_key_accessor is a value created in Token accessors
paragraph

Body {

 entity_alias: String

 num_uses: Integer

}

Example body {

 "entity_alias": "james@example.com",

 "num_uses": 1

}

Example response {

 "request_id": "9b359aa5-2675-e591-cf03-ce411e31d6eb",

 "lease_id": "",

 "renewable": false,

 "lease_duration": 0,

 "data": null,

 "wrap_info": null,

 "warnings": null,

 "auth": {

 "client_token": "s.5D48miDOiZUhjfeqpsksI1J4",

 "accessor": "lLJuX1pfhApECQ8QOkRCLqXF",

 "policies": [

 "default",

 "gettoken"

],

 "token_policies": [

 "default",

 "gettoken"

],

 "metadata": null,

 "lease_duration": 604800,

 "renewable": false,

 "entity_id": "dd3cf5d1-eeec-8b19-394c-15c13aea11ec",

 "token_type": "service",

 "orphan": false

 }

}

Caution This endpoint can be used to create the single-use token which can
be delivered to users to let them restore their private key. This token
will have access only to the user with email provided in entity_alias.
This action can be performed through Vault CLI, but if you decide to
implement that call, make sure to secure it properly and allow access
to create only for admins and their tokens with Admin minimum policy

2.3. Proxy endpoints

a) POST /vault

Example input:

{

 "email": "james@example.com",

 "uuid": "7b18f9e4-abab-44fc-a430-2c91da22db71",

 "secret":

"MIICXAIBAAKBgQCqGKukO1De7zhZj6+H0qtjTkVx{...}/scw9RZz+/6rCJ4p0=",

 "device": "FX"

}

Example output:

{

 "request_id": "686b4231-9414-4a2c-0761-790d25cc77d7",

 "data": {

 "created_time": "2021-06-16T11:08:13.581438136Z",

 "deletion_time": "",

 "destroyed": false,

 "version": 1

 }

}

b) POST /vault/get-secret

Example input:

{

 "email": "user@email.com",

 "device": "FX",

 "version": 4

}

or

{

 "email": "user@email.com",

 "device": "FX"

}

and example header:

"x-vault-token": "s.koiTzfowsq2Y62CTwRXdx1KX"

Example output:

{

 "token": "s.ZMBwadxGAy7o2Lyz5Wr4710A"

}

c) POST /vault/validate-secrets

Example input:

{

 "user@example.com": [

 {

 "public_key": "MIIBCgKCAQEA+xGZ/wcz{...}FRU9Z4N6YwIDAQAB",

 "device_type": "FX"

 }

],

 "jon@example.com": [

 {

 "public_key": "MIIBCgKCAQEA+xGZ/wcz{...}FRU9Z4N6YwIDAQAB",

 "device_type": "FX"

 }

],

 "admin@example.com": []

}

Example output:

{

 "user@domain.com": {

 "FX": "OK"

 },

 "jon@domain.com": {

 "FX": "NO_RECORDS"

 },

 "annie@domain.com": {

 "FX": "NO_INTEGRITY"

 },

 "admin@domain.com": {

 "FX": "NO_DEVICE"

 }

}

d) GET /healthcheck

Example response:

{

 "uptime": 674600.447861698,

 "message": "OK",

 "timestamp": 1623837163685,

 "vault": {

 "initialized": true,

 "sealed": false,

 "standby": false,

 "performance_standby": false,

 "replication_performance_mode": "disabled",

 "replication_dr_mode": "disabled",

 "server_time_utc": 1623837163,

 "version": "1.6.2",

 "cluster_name": "vault-cluster-3f729579",

 "cluster_id": "9055f590-fbdb-5e56-4da3-08be5d0817a5"

 }

}

e) Optional POST /vault/get-restore-token

Example input:

{

 "user_email": "user@email.com",

 "admin_token": "s.koiTzfowsq2Y62CTwRXdx1KX"

}

Example output:

{

 "token": "s.ZMBwadxGAy7o2Lyz5Wr4710A"

}

2.4. Self signed certificate

The self-signed certificate is an important point of the entire system. It allows you to

verify that the user's keys will go to the correct proxy server. The exact implementation of

certificate pinning depends on the technology used to run the proxy server. Below is the

instruction on how to generate a certificate and its fingerprint using OpenSSL.

➜ ~ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -

days 365

This command will generate two files that should be used to start the HTTPS server. After

calling the above command, you will need to enter the PEM passphrase. Remember it and

keep it safe and secure. You will also need to provide some additional information to

generate the correct certificate.

The next step is to generate certificate fingerprint.

➜ ~ openssl x509 -noout -in cert.pem -fingerprint -sha256

SHA256

Fingerprint=29:E6:34:79:9E:DE:F0:13:14:86:33:82:23:03:A0:92:D8:0C:E7:A3:

9B:66:96:FA:F9:03:6D:17:7C:DE:F9:07

The certificate hash is not sensitive data. It will be used to confirm in the administrator's

application that the server with which the connection is being made is correct. After entering

the server address, the administrator's application will display a message asking for

confirmation of fingerprints compliance. After that, check if the fingerprint displayed in the

message matches the one that was generated

